Automatic Modulation Recognition Using Compressive Cyclic Features
نویسندگان
چکیده
Higher-order cyclic cumulants (CCs) have been widely adopted for automatic modulation recognition (AMR) in cognitive radio. However, the CC-based AMR suffers greatly from the requirement of high-rate sampling. To overcome this limit, we resort to the theory of compressive sensing (CS). By exploiting the sparsity of CCs, recognition features can be extracted from a small amount of compressive measurements via a rough CS reconstruction algorithm. Accordingly, a CS-based AMR scheme is formulated. Simulation results demonstrate the availability and robustness of the proposed approach.
منابع مشابه
Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملتشخیص خودکار مدولاسیون با استفاده از برنامه نویسی ژنتیک و شبکه عصبی چند لایه پرسپترون
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. In this research we implemented our model by using appropria...
متن کاملVehicle Logo Recognition Using Image Matching and Textural Features
In recent years, automatic recognition of vehicle logos has become one of the important issues in modern cities. This is due to the unlimited increase of cars and transportation systems that make it impossible to be fully managed and monitored by human. In this research, an automatic real-time logo recognition system for moving cars is introduced based on histogram manipulation. In the proposed...
متن کاملCHOCS: A Framework for Estimating Compressive Higher Order Cyclostationary Statistics
The framework of computing Higher Order Cyclostationary Statistics (HOCS) from an incoming signal has proven useful in a variety of applications over the past half century, from Automatic Modulation Recognition (AMR) to Time Difference of Arrival (TDOA) estimation. Much more recently, a theory known as Compressive Sensing (CS) has emerged that enables the efficient acquisition of high-bandwidth...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithms
دوره 10 شماره
صفحات -
تاریخ انتشار 2017